
Appendix D - Controllers 1

COMPUTERORGANIZATION AND DESIGN
The Hardware/Software Interface

5th
Edition

Appendix D

Controller Implementation

Controller Implementations

n Combinational logic (single-cycle);
n Finite state machine (multi-cycle, pipelined);
n ROM;
n PLA;
n Micro-code.

Appendix D - Controllers 2

Single Cycle Implementation
n All instructions take one clock cycle.
n Clock rate determined by the slowest instruction (LW).

Combinational Implementation

Appendix D - Controllers 3

Pipelined Implementation

n Value of control signals is dependent upon
n What instruction is being executed.
n Which step is being performed.

n Use the information we’ve accumulated to specify a finite
state machine
n Specify the finite state machine graphically.
n Use micro-programming.

Implementing Control

Appendix D - Controllers 4

n Control signals
n Are “don’t care”

if they are not
mentioned.

n Are asserted if
name only.

n Otherwise the
value is stated.

n How many state
bits will we
need?

Graphical Specification of FSM

Finite State Machine for Control

Appendix D - Controllers 5

PLA Implementation
n If I picked a horizontal or vertical line, could you explain it?

n ROM = "Read Only Memory"
n Values of memory locations are fixed ahead of time.

n A ROM can be used to implement a truth table
n If the address is m-bits, we can address 2m entries in the ROM.
n Outputs are the bits of data that the address points to.
n m is the "height", and n is the "width."

ROM Implementation

m n

0 0 0 0 0 1 1
0 0 1 1 1 0 0
0 1 0 1 1 0 0
0 1 1 1 0 0 0
1 0 0 0 0 0 0
1 0 1 0 0 0 1
1 1 0 0 1 1 0
1 1 1 0 1 1 1

Appendix D - Controllers 6

n How many inputs are there?
n 6 bits for opcode, 4 bits for state = 10 address lines.
n i.e. 210 = 1024 different addresses.

n How many outputs are there?
n 16 datapath-control, 4 state bits = 20 outputs.

n ROM is 210 x 20 bits = 20K bits (a rather unusual size).
n Rather wasteful, since for lots of entries the outputs are

the same.

ROM Implementation

n PLA is much smaller
n Can share product terms.
n Only need entries that produce an active output.
n Can take into account don't cares.

n Size is (#inputs ´ #product-terms) + (#outputs ´ #product-
terms).
n For this example = (10x17)+(20x17) = 510 PLA cells

n PLA cell is slightly larger than a ROM cell.

ROM vs. PLA

Appendix D - Controllers 7

Micro-programming Prelude
n The controller is easy to graphically specify for the few

instructions we are implementing.
n What about a full MIPS instruction set with over 100

instructions ranging from 1 clock cycle to over 20 clock
cycles?
n Use VHDL or Verilog, but inefficient from hardware perspective.

n Consider an instruction set with several hundred
instructions of widely varying classes, such as the IA-32
architecture
n Control unit could easily require thousands of states with

hundreds of different sequences.
n Specifying the control unit with a graphical representation would

be impossible.

Micro-programming

n Suppose we think of the set of control signals that must
be asserted in a state as an instruction to be executed by
the datapath. To avoid confusing the instructions of the
MIPS instruction set with these low-level control
instructions, the latter are called micro-instructions.

n Each micro-instruction defines the set of datapath control
signals that must be asserted in a given state.

n Executing a micro-instruction has the effect of asserting
the control signals specified by the micro-instruction.

Appendix D - Controllers 8

Micro-programming

n In addition to defining which control signals must be
asserted, we must also specify the sequencing—what
micro-instruction should be executed next?

n If the micro-instruction requirements become large, than a
“micro-instruction assembler” is usually used, including
such abilities as subroutine calls.

n Designing the control as a program that implements the
machine instructions in terms of simpler micro-instructions
is called micro-programming.

Micro-programming aka Wikipedia

n Microcode is stored in SRAM or flash memory. This is
traditionally denoted a "writeable control store" in the
context of computers. Complex digital processors may
also employ more than one (possibly microcode based)
control unit in order to delegate sub-tasks which must be
performed (more or less) asynchronously in parallel.
Microcode is generally not visible or changeable by a
normal programmer, not even by an assembly
programmer. Unlike machine code which often retains
some compatibility among different processors in a family,
microcode only runs on the exact electronic circuitry for
which it is designed.

Appendix D - Controllers 9

Micro-programming aka Wikipedia

n More extensive micro-coding has also been used to allow
small and simple microarchitectures to emulate more
powerful architectures with wider word length, more
execution units and so on; a relatively simple way to
achieve software compatibility between different products
in a processor family.

n Some hardware vendors, especially IBM, use the term as
a synonym for firmware, so that all code in a device,
whether microcode or machine code, is termed microcode
(such as in a hard drive for instance, which typically
contains both).

Micro-program Controller

Appendix D - Controllers 10

n No encoding
n Basis for VLIW.
n 1 bit for each data path control signal.
n Faster, requires more memory.
n Used for Vax 780 in the 1980’s — 400K of memory.

n Lots of encoding
n Send the micro-instructions through logic to get control signals.

n Uses less memory, slower.

Maximally vs. Minimally Encoded

Vocabulary

n Micro-instruction
n Contains a control word and a sequencing word

n Control Word - all the control information required for one
clock cycle.

n Sequencing Word - information needed to decide the next
micro-instruction to be executed.

n Control Memory or Control Storage
n Writable storage in the micro-programmed control unit to store

the micro-program.
n Allows the micro-program to be modified, thereby providing

means to change or modify the instruction set.

Appendix D - Controllers 11

Micro-instruction Classification

n Micro-instructions can be classified in a variety of ways in
which the designer must choose the parallel “power” of
each instruction. There are two main types:
n Vertical micro-programming - each micro-instruction

specifies a single (or few) micro-operations to be
performed.

n Horizontal micro-programming - each micro-
instruction specifies many different micro-operations
to be performed in parallel.

Micro-programming

n Vertical
n Width is narrow - N control signals can be encoded into log2n

control bits.
n Limited ability to express parallelism.
n Considerable encoding of control information requires external

memory word decoder to identify the exact control lines being
manipulated.

n Horizontal
n Wide memory word.
n High degree of parallel operations are possible.
n Little to no encoding of control information.

Appendix D - Controllers 12

Compromise Technique

n Nano-programming
n Use a 2-level control storage organization.
n Top level is a vertical format memory.
n Output of the top level memory drives the address register of the

bottom (nano-level) memory.
n Nano-memory uses the horizontal format which produces the

actual control signal outputs.
n Main advantage is significant saving in control memory size.
n Main disadvantage is more complexity and slower operation

(doing 2 memory accesses for each micro-instruction).

Historical Perspective

n In the ‘60s and ‘70s micro-programming was used
frequently for implementation.

n This led to more sophisticated ISAs and the VAX.
n In the ‘80s RISC processors based on pipelining

became popular.
n Pipelining the micro-instructions is also possible.
n Implementations of IA-32 processors since the 486 use

n “hardwired control” for simpler instructions (few cycles, FSM
control implemented using PLA or random logic).

n “micro coded control” for more complex instructions (large
numbers of cycles).

Appendix D - Controllers 13

Pentium 4
n

n Processor executes simple microinstructions, 70 bits wide (hardwired).
n 120 control lines for integer datapath, 400 for floating point.
n If an instruction requires more than 4 microinstructions to implement,

control from micro-code ROM (8000 micro-instructions).
n It is complicated!

Control

Control

Control

Enhanced
floating point
and multimedia

Control

I/O
interface

Instruction cache

Integer
datapath

Data
cache

Secondary
cache
and
memory
interface

Advanced pipelining
hyperthreading support

Summary

n Finite-state -machines give the most flexibility
n PLA
n ROM
n Micro-programming

n Modern processors are complicated
n Micro-coded.
n Make the common case fast.
n Make the simple instructions fast.
n Take the performance hits on the complex instructions.

