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| Appendix D

| Controller Implementation

| Controller Implementations

I Combinational logic (single-cycle);
Finite state machine (multi-cycle, pipelined);
ROM;
PLA;
Micro-code.
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| Single Cycle Implementation

| All instructions take one clock cycle.
Clock rate determined by the slowest instruction (LW).
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| Combinational Implementation
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| Pipelined Implementation
I
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Implementing Control

Value of control signals is dependent upon

What instruction is being executed.

Which step is being performed.
Use the information we’'ve accumulated to specify a finite
state machine

Specify the finite state machine graphically.

Use micro-programming.
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| Graphical Specification of FSM

l Control signals

Are “don’t care”
if they are not
mentioned.

ALUSTcA =0
ALUSIcB = 11
ALUOp =00

Are asserted if
name only.

Otherwise the
value is stated.
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| PLA Implementation

l If | picked a horizontal or vertical line, could you explain it?
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| ROM Implementation

l ROM = "Read Only Memory"
Values of memory locations are fixed ahead of time.
A ROM can be used to implement a truth table
If the address is m-bits, we can address 2™ entries in the ROM.
Outputs are the bits of data that the address points to.
m is the "height", and n is the "width."
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ROM Implementation

How many inputs are there?
6 bits for opcode, 4 bits for state = 10 address lines.
i.e. 210 = 1024 different addresses.

How many outputs are there?
16 datapath-control, 4 state bits = 20 outputs.

ROM is 2% x 20 bits = 20K bits (a rather unusual size).

Rather wasteful, since for lots of entries the outputs are
the same.

ROM vs. PLA

PLA is much smaller

Can share product terms.
Only need entries that produce an active output.
Can take into account don't cares.

Size is (#inputs x #product-terms) + (#outputs x #product-
terms).

For this example = (10x17)+(20x17) = 510 PLA cells
PLA cell is slightly larger than a ROM cell.
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Micro-programming Prelude

The controller is easy to graphically specify for the few
instructions we are implementing.

What about a full MIPS instruction set with over 100
instructions ranging from 1 clock cycle to over 20 clock
cycles?

Use VHDL or Verilog, but inefficient from hardware perspective.
Consider an instruction set with several hundred
instructions of widely varying classes, such as the IA-32
architecture

Control unit could easily require thousands of states with
hundreds of different sequences.

Specifying the control unit with a graphical representation would
be impossible.

Micro-programming

Suppose we think of the set of control signals that must
be asserted in a state as an instruction to be executed by
the datapath. To avoid confusing the instructions of the
MIPS instruction set with these low-level control
instructions, the latter are called micro-instructions.

Each micro-instruction defines the set of datapath control
signals that must be asserted in a given state.

Executing a micro-instruction has the effect of asserting
the control signals specified by the micro-instruction.
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Micro-programming

In addition to defining which control signals must be
asserted, we must also specify the sequencing—what
micro-instruction should be executed next?

If the micro-instruction requirements become large, than a
“micro-instruction assembler” is usually used, including
such abilities as subroutine calls.

Designing the control as a program that implements the
machine instructions in terms of simpler micro-instructions
is called micro-programming.

Micro-programming aka Wikipedia

Microcode is stored in SRAM or flash memory. This is
traditionally denoted a "writeable control store" in the
context of computers. Complex digital processors may
also employ more than one (possibly microcode based)
control unit in order to delegate sub-tasks which must be
performed (more or less) asynchronously in parallel.
Microcode is generally not visible or changeable by a
normal programmer, not even by an assembly
programmer. Unlike machine code which often retains
some compatibility among different processors in a family,
microcode only runs on the exact electronic circuitry for
which it is designed.
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Micro-programming aka Wikipedia

More extensive micro-coding has also been used to allow
small and simple microarchitectures to emulate more
powerful architectures with wider word length, more
execution units and so on; a relatively simple way to
achieve software compatibility between different products
in a processor family.

Some hardware vendors, especially IBM, use the term as
a synonym for firmware, so that all code in a device,
whether microcode or machine code, is termed microcode
(such as in a hard drive for instance, which typically
contains both).

Micro-program Controller

Control unit

Microcode memory Mamiand Datapath
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Instruction register
opcode fisld
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Maximally vs. Minimally Encoded

No encoding
Basis for VLIW.
1 bit for each data path control signal.

Faster, requires more memory.
Used for Vax 780 in the 1980’s — 400K of memory.

Lots of encoding

Send the micro-instructions through logic to get control signals.

Uses less memory, slower.

Vocabulary

Micro-instruction
Contains a control word and a sequencing word

Control Word - all the control information required for one
clock cycle.

Sequencing Word - information needed to decide the next
micro-instruction to be executed.
Control Memory or Control Storage

Writable storage in the micro-programmed control unit to store
the micro-program.

Allows the micro-program to be modified, thereby providing
means to change or modify the instruction set.
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Micro-instruction Classification

Micro-instructions can be classified in a variety of ways in
which the designer must choose the parallel “power” of
each instruction. There are two main types:

Vertical micro-programming - each micro-instruction
specifies a single (or few) micro-operations to be
performed.

Horizontal micro-programming - each micro-
instruction specifies many different micro-operations
to be performed in parallel.

Micro-programming

Vertical

Width is narrow - N control signals can be encoded into log2n
control bits.

Limited ability to express parallelism.
Considerable encoding of control information requires external
memory word decoder to identify the exact control lines being
manipulated.
Horizontal
Wide memory word.
High degree of parallel operations are possible.
Little to no encoding of control information.
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Compromise Technique

Nano-programming
Use a 2-level control storage organization.
Top level is a vertical format memory.
Output of the top level memory drives the address register of the
bottom (nano-level) memory.
Nano-memory uses the horizontal format which produces the
actual control signal outputs.
Main advantage is significant saving in control memory size.

Main disadvantage is more complexity and slower operation
(doing 2 memory accesses for each micro-instruction).

Historical Perspective

In the ‘60s and ‘70s micro-programming was used
frequently for implementation.

This led to more sophisticated ISAs and the VAX.

In the ‘80s RISC processors based on pipelining
became popular.

Pipelining the micro-instructions is also possible.
Implementations of I1A-32 processors since the 486 use

“hardwired control” for simpler instructions (few cycles, FSM
control implemented using PLA or random logic).

“micro coded control” for more complex instructions (large
numbers of cycles).
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Pentium 4

120 control lines for integer datapath, 400 for floating point.

If an instruction requires more than 4 microinstructions to implement,
control from micro-code ROM (8000 micro-instructions).

It is complicated!

Processor executes simple microinstructions, 70 bits wide (hardwired).

Summary

Finite-state -machines give the most flexibility
PLA
ROM
Micro-programming
Modern processors are complicated
Micro-coded.
Make the common case fast.
Make the simple instructions fast.
Take the performance hits on the complex instructions.
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